
Introduction

In 1975, Noy-Meir presented a comprehensive, graph-
ical stability analysis for plant–herbivore interactions.
Inspired by the analysis of predator–prey interactions
by Rosenzweig & MacArthur (1963), he cast the
model in the form of ordinary differential equations,
representing grazing as a homogeneous process in
space and continuous in time (Noy-Meir 1975). His
analysis demonstrated that a continuously grazed
ecosystem may have multiple stable states and may be
‘discontinuously stable’ (see also reviews by May
1977; Tainton, Morris & Hardy 1996). The term
implies that the grazing system may move discontinu-
ously from a stable state of high productivity to a sta-
ble state of low productivity with only a small increase
in grazing pressure or with a minor disturbance. This
and other harvesting models (Clark 1981) have pro-
vided an important paradigm for bioeconomics,
namely, that without change in management, a biologi-
cal resource can become overexploited and fall into a
low-productivity state from which it can recover only
through dramatic reduction in harvest rate.

Since Noy-Meir’s (1975) analysis, much progress
has been made in refining understanding of the graz-
ing process in temperate grassland. Particularly,
advances have been made in understanding grazing at
the bite scale (Illius & Gordon 1987; Spalinger &
Hobbs 1992; Parsons et al. 1994). Domestic rumi-
nants remove a relatively fixed proportion (some
40–70%) of standing vegetation with each bite
(Ungar, Genizi & Demment 1991; Laca et al. 1992). If
ruminants harvested 50% of the standing vegetation
uniformly across an entire grazeable area each day,
this would exceed the ability of the vegetation to
recover from defoliation (the estimated sustainable
homogeneous removal rate is 2·5% of standing vege-
tation per day; Parsons & Chapman 1998). Thus, for a
grazing system to be sustainable, grazing must take
place from only a small portion of the total grazeable
area each day (some 5%; Wade 1991; Parsons &
Chapman 1998). This simple calculation illustrates
that grazed grassland is necessarily heterogeneous,
because at any time, different patches will be in differ-
ent states of recovery from previous defoliations. As
has long been recognized, ‘continuous’ grazing is not
a continuous process, but involves a succession of dis-
crete defoliations at the bite scale, each followed by a

variable period of regrowth (Hodgson & Ollerenshaw
1969; Morris 1969; Clark et al. 1984). Furthermore, it
is not a deterministic process: because animals take
bites from only a small part of the total area on any
day, there is some uncertainty as to exactly where ani-
mals choose to take bites. Thus, when considering
grazing at the bite scale, we must deviate from Noy-
Meir’s assumptions in three ways: we must assume
(1) spatial heterogeneity instead of homogeneity, (2)
discrete instead of continuous defoliation and (3)
stochasticity instead of determinism.

Below we introduce an implicitly spatial model
with these characteristics, where we treat a field as a
collection of bite-sized patches but ignore their
explicit spatial relationships. We use the model to
address the following questions: (1) does a considera-
tion of grazing at the bite scale alter our current under-
standing of the stability and sustainability of grazing
systems and (2) how does spatial heterogeneity and
variance in defoliation intervals affect the yield of
grazing systems?

Stability of grazing according to Noy-Meir

Noy-Meir’s (1975) analysis demonstrated that a
highly simplified representation of a biological pro-
cess can still produce complex dynamics. In this case,
the analysis suggested that continuously grazed
ecosystems may be discontinuously stable. The
graphical analysis that led to this insight is repre-
sented in Fig. 1. High and low stock densities support
only one stable equilibrium vegetation state, but at
intermediate stock densities the model allows three
equilibria (i.e. states of zero net change; the points of
intersection of growth and consumption curves). The
two outer points of intersection are stable equilibria.
Thus, as the arrows indicate, vegetation states near
these equilibria approach them more closely. The
intermediate equilibrium is unstable and nearby vege-
tation states are repelled and then attracted by one of
the two stable equilibria.

The existence of two alternative stable equilibria at
one stock density has also been called ‘dual stability’
which, in Noy-Meir’s analysis, arises under the fol-
lowing conditions: (1) the consumption function must
display non-linearity between zero and the vegetation
state that supports the maximal instantaneous rate of
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vegetation growth and (2) there exists an ungrazeable
plant reserve. These conditions are quite realistic in
many grazing systems, notably in temperate zone pas-
tures, and so we concentrate our analysis on this case.

A bite scale model for grazing

We derive a model to describe the dynamics of bite-
sized patches. Variables are summarized in Table 1.
Patch state is represented by a single state variable, b,
the vegetation biomass per unit ground area. At the

bite scale, grazing is a discrete process with dynam-
ics governed by instantaneous consumption c and
subsequent plant growth g in the time tint between
defoliations:

b(j + 1) = b(j) – c(b(j)) + g(b'(j),tint), eqn 1

where b(j) is the biomass immediately priorto the j’th
defoliation and b'(j) is the biomass immediately after
the j’th defoliation, so:

b'(j) = b(j) – c(b(j)). eqn 2

Formulating the grazing process by looking at patch
state only once during the interval between defolia-
tions allows us to identify equilibrium conditions,
even though it is understood that biomass density in a
patch is continually changing. Patch equilibria, b*,
exist where growth in the interval between defolia-
tions is exactly equal to the amount of biomass
removed in each defoliation:

g(b* – c(b*),tint) = c(b*). eqn 3

DEFOLIATION

The consumption function, c, describes the biomass
that is removed in a single bite. It captures the instan-
taneous and local functional response of animals to
patch state. Herbivores remove variable amounts of
foliage in a single bite, but removal tends to be pro-
portional to the amount of standing vegetation (Ungar
et al. 1991; Laca et al. 1992; Edwards et al. 1996),
although a portion of the biomass may be considered
ungrazable, thus:

c = 0 if b ≤ bc,min

c = f(b – bc,min) if b > bc,min, eqn 4

where bc,min is the ungrazeable portion of the standing
biomass (which precludes grazing to extinction). The
parameter f is the fraction of biomass in the grazeable
horizon (b – bc,min) that is removed by the grazer in
one bite. Default values for all parameters are listed in
Table 2 using the example of grazing by young cattle.

GRAZING INTERVAL (DURATION OF REGROWTH)

In contrast to the consumption function, which cap-
tures the instantaneous response of animals to local
patch states, the function determining the grazing
interval depends on how animals interact with the
rest of the pasture. We can envisage the grazing
interval as the time taken by animals to repeat the
present defoliation of a single patch in all other
patches in the pasture, thus, the time taken to return
to the first defoliated patch. This return time depends
on stock density, intake demand per animal and
physical constraints such as handling time per bite.
But the relationship is not simple, because animals
may encounter patches in variable states and exploit
them in variable ways. They may also not graze from
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Fig. 1. Stability analysis based on Noy-Meir (1975). Plant growth rates (solid lines)
and rates of consumption (dotted lines) as functions of vegetation state. Intersections
of the growth and consumption functions mark equilibrium points. The arrows indi-
cate the direction of state change.

Table 1. List of variables

Symbol Meaning Unit

PATCH-SCALE VARIABLES

b biomass (dry mass) density just before grazing in patch kg m–2

b′ biomass density just after grazing in a patch kg m–2

c biomass density removed in one bite kg m–2

g biomass density increase between defoliations kg m–2

mbite biomass per bite kg
tbite handling time per bite s
tint time in the interval between successive defoliations days

ANIMAL - OR FIELD-SCALE VARIABLES

Ma biomass intake per animal per day kg
Na number of bites taken per animal per day –
Ta grazing time per animal per day s



all the other patches before they return and so return
times may be variable.

To address this uncertainty, we consider two con-
trasting alternatives. First we cast grazing at the
patch scale as a deterministic process in which all
patches are defoliated and when they are in exactly
the same state. This case can be seen as equivalent to
a systematic, sequential defoliation of a large num-
ber of patches. In this way, we can derive equilib-
rium solutions based on the dynamics of a single
patch (equation 3), because by assumption all
patches in this case have identical (though time-dis-
placed) dynamics. Second, we assume that animals
defoliate patches at random and independent of
patch state. To do this we must expand the model to
consider many patches simultaneously (we chose
2000). Steady-state solutions for this stochastic
model are identified by simulation.

In both the deterministic and stochastic cases, the
relationship between handling time per bite, tbite, and
bite mass, mbite, is linear (e.g. Spalinger & Hobbs
1992; Parsons et al. 1994):

tbite = tpreh+ kmastmbite, eqn 5

where tprehis the time required to open and close the
jaws to prehend a bite and kmast is the mastication
(chewing) time per unit bite mass. We ignore for
now other time-consuming activities associated
with foraging.

Bite mass is calculated by multiplying consumption
c from a patch (in units of kg biomass per m2) with
bite (patch) area abite:

mbite = cabite. eqn 6

Bite area is considered here to be constant and inde-
pendent of patch state (Demment, Laca & Greenwood
1987; Ungar & Noy-Meir 1988).

As did Noy-Meir (1975), we assume that animal
intake per day is limited either by a maximum grazing
time per animal Ta,max or by the rate of digestion to
give a maximum daily intake of mass per animal
Ma,max. Hence, in the deterministiccase, where all

bites taken are assumed to be of identical size, the
number of bites taken per animal per day is:

Ma,maxNa = –––––– if Natbite < Tambite

or
Ta,maxNa = ––––– if Nambite < Ma eqn 7
tbite

and the defoliation interval, tint, is derived as the time
taken for all animals to bite once from all bite-size
patches per ha, which is:

S –1

tint = Na –––––abite , eqn 8( 10 000 )
where S is stock density in animals per ha and 10 000
scales from animals per ha to animals per m2.

In the stochasticcase, mbite, tbite and tint are not
identical across patches, but depend on random patch
selection. We determine their distribution by simulat-
ing defoliation in 2000 patches. A daily foraging bout
ends when one of two conditions is satisfied:
Na S∑ mbite,j ≥ Ma,max ––––– 2000 abite

j = 1 10 000
or
Na S∑ tbite,j ≥ Ta,max ––––– 2000 abite . eqn 9

j = 1 10 000

PLANT GROWTH 

We depart from the convention of using a two-param-
eter logistic equation and use a modified growth func-
tion that describes features of growth that have been
shown to be important in modelling the response of
grass to defoliation (Johnson & Parsons 1985;
Parsons, Johnson & Harvey 1988). Briefly, in the
logistic equation, the rate of growth is determined
solely on the basis of current vegetation biomass.
Thus, the function cannot distinguish between a situa-
tion where current biomass is the result of a recent
lenient defoliation or the result of a severe defoliation
that took place some time ago. Yet, observation (Grant
et al. 1983; Parsons et al. 1983, 1988) and leaf-age-
structured models (Johnson & Parsons 1985; Parsons
et al. 1988; Thornley & Johnson 1990) of grass
growth suggest that these two situations can produce
very different specific growth rates. After lenient
defoliation, net growth rate per unit biomass tends to
be slow, because much of the standing biomass con-
sists of older leaves, which contribute to a high rate of
senescence. After severe defoliation, old and new
leaves are almost all removed and so there is a pre-
dominance of young leaves in the regrowing vegeta-
tion. Thus, when vegetation has recovered to the same
biomass as after the lenient defoliation, the rate of
senescence is lower and therefore net growth rate per
unit biomass is larger.

Leaf-age-structured growth models incorporate the
effect of defoliation severity explicitly but here we seek
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Table 2. List of parameters

Symbol Meaning Default value

abite bite area 0·004 m2

bmax maximal biomass density 0·321 kg m–2

bc,min residual biomass density, animals cannot deplete
biomass in patch to less than this 0·0153 kg m–2

f defoliation fraction for grazeable biomass 0·5
kmast mastication time per unit biomass 2000 s kg–1

tpreh prehension time per bite 0·82 s
µ maximal relative growth rate 0·1 day–1

Ma,max maximal daily intake per animal 8 kg
S stock density 6 an ha–1

Ta,max maximal daily grazing time per animal 48000 s

Source, Parsons et al. (1994); intake parameters set here for young cattle (Penning
et al. 1997)



a simpler formulation. We introduce a function in which
the rate of growth after defoliation depends not only on
current patch state b,but also on the initial condition for
regrowth, the patch state b' just after the last defoliation.
The variable b' modifies the intrinsic rate of growth µ:

db b' b
–– = µb 1 – –––– 1 – –––– eqn 10
dt ( bmax ) ( bmax )
with bmax as the maximal biomass. When b' << bmax

(implying severe defoliation), relative (specific)
growth rate is maximal and the function becomes
indistinguishable from the logistic equation. Larger
values of b' imply more lenient defoliation and predict
lower relative growth rates than the logistic equation.

Because b' is constant for one growth interval, b'
can be taken to be a parameter and equation 10 can be
integrated just like the logistic equation. We can there-
fore formulate the function for the finite growth incre-
ment g of equation 2:

Y
g (b', tint) = b' ––––––––––––– – 1 , eqn 11a

b'1 −–––– (1 – Y)( bmax
)

where
b'

Y= exp µ (1 – –––– ) tint . eqn 11b( bmax )

In the stochastic case, defoliation intervals and initial
conditions for regrowth vary between patches, so we
apply the growth function individually to each of the
2000 patches following each day’s defoliations.

Results

ANALYSIS OF THE DETERMINISTIC MODEL

We compare the deterministic and stochastic cases to
distinguish the effects of discrete patch utilization per
se from the effects of stochasticty in patch selection.
We emphasize, here, that our distinction between
determinism and stochasticity applies strictly to the
patch scale: at the field scale (on the basis of assuming
that a field contains a very large number of patches)
both alternatives generate deterministic dynamics.

Figure 2 is the equivalent of Noy-Meir’s (1975)
graphical analysis (Fig. 1), now based on the deter-
ministic patch model. In the deterministic case we can
extrapolate from the patch scale to the field scale, sim-
ply by dividing the consumption function c
(equation 4) by the interval tint that would allow ani-
mals to return to a patch (equation 8) and dividing the
growth function g (equation 11a,b) by the interval that
would allow plants to regrow to the biomass just
before defoliation. We can do this because, in the
deterministic case, any harvested patch is representa-
tive of all patches that are harvested at any time.
Clearly, the basic phenomena of Noy-Meir’s (1975)
dual stability model are preserved, in particular, the
fact that dual stability arises at intermediate stock den-
sities and when the flat portion of the consumption
curve (where the rate of digestion limits intake) inter-
sects the growth curve twice.

Figure 3a shows the patch dynamics corresponding
to the region of dual stability in Fig. 2b. The upper
equilibrium is characterized by long defoliation inter-
vals (in this example 55 days) and patches that recover
to nearly maximum density. The lower equilibrium is
characterized by short intervals (8 days) and little
recovery. Average biomass densities for the two equi-
libria are 0·145 kg m–2 and 0·023 kg m–2, respectively.
Dual stability implies that, depending on initial condi-
tions, all patches in the field should fall into either one
or the other of the two dynamical patterns.

We can now explore parameters of grazing not con-
sidered by Noy-Meir (1975). In Fig. 4, we illustrate
the effect of the defoliation fraction f on growth and
consumption. In our model, this parameter affects not
only consumption but also growth, because our
growth function incorporates the effects of grazing
severity. In the consumption function, defoliation
fraction f shifts the location of the point, where con-
sumption becomes limited by the rate of digestion
(rather than by time) to the right. This ‘switch’ point is
located at the bite mass, where bites are just large
enough to satiate animals in the maximal time allotted
to grazing. Thus, when bite fractions are smaller,
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Fig. 2. Stability analysis on the field scale for the discrete patch-based model with
deterministic patch selection. Average plant growth rates (solid lines) and average rates
of consumption (dotted lines) as functions of patch biomass just prior to defoliation.
Intersections mark equilibrium points. The defoliation fraction is set to f = 1·0 and stock
densities to 3 (a), 6 (b) and 8 (c) an ha–1. All other parameters are set to default values.



biomass needs to be higher at the switch point. In the
growth function, small defoliation fractions move the
biomass density that is optimal for regrowth after
defoliation to the left. Because f moves the switch

point of the consumption function and point of opti-
mal growth in opposite directions, conditions for dual
stability (i.e. where the flat portion of the consump-
tion function intersects twice with the growth func-
tion) become increasingly limited. Indeed, Fig. 4c
shows that no dual stability can exist for f = 0·2 at any
stock density. One can calculate that dual stability dis-
appears at f = 0·4, where the optimum of the growth
curve coincides with the switch point for animal
intake. Thus, while Noy-Meir (1975) noted the signif-
icance of this relationship between the growth curve
and the consumption curve on stability, we can now
associate a mechanism with the phenomenon: dual
stability should be impossible if herbivores grazing
deterministically take less than about 40% of the
standing biomass.

SIMULATION OF RANDOM PATCH SELECTION

Figure 5 is the equivalent of Figs 1 and 2, now for the
stochastic case, i.e. assuming random patch selection.
The growth curve in this figure was approximated by
letting 2000 patches evolve to a steady mean state.
Each point on the curve represents a separate simula-
tion with a different number of defoliations per day.
The consumption curves are calculated based on the
corresponding stationary distributions of patch states.

In the stochastic case, dual stability is found in a
much smaller region of parameter space. For example,
at f = 1·0, dual stability exists only for a small range of
stock densities between 4·8 and 5·1 an ha–1 and at
f = 0·5 it does not exist for any stock density.

The patch scale dynamics associated with dual sta-
bility in the stochastic case are illustrated in Fig. 3b.
As in the deterministic case, the upper equilibrium
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Fig. 3. Examples of patch dynamics in the dual stability domain: (a) for the deterministic patch model with parameter values
corresponding to Fig. 2b; (b) for the stochastic patch model with parameter values corresponding to Fig. 5b.

Fig. 4. The effect of defoliation fraction f on stability. Average plant growth rates
(solid lines) and average rates of consumption (dotted lines) as functions of patch
biomass just prior to defoliation. Except for f, all parameters are set to default values



(the average biomass is 0·130 kg m–2) is characterized
by longer defoliation intervals (on average, 30 days)
and the lower equilibrium (0·066 kg m–2) by shorter
intervals (15 days). Although patch dynamics at these
alternative stable states are quite different from one
another, total animal intake is actually very similar
(see Fig. 5b). In the stochastic case, defoliation inter-
vals at equilibrium have a negative exponential distri-
bution (as they should in a Poisson process) and so a
mean to standard-deviation ratio of 1. A negative
exponential distribution for defoliation intervals has
been observed in sheep-grazed pastures (Edwards
1994), suggesting that it is not unrealistic to assume
random patch selection under some conditions.

Preference in patch selection

So far, we considered only two extreme forms of
patch selection: one where all patches are harvested in
exactly the same way and one where patches are
selected totally at random. Next, we consider a case
where animals exhibit preference for patches of a cer-
tain biomass. Preference by large ungulate herbivores
for either short (low biomass) or tall (high biomass)
grass patches has been observed in experiments

(Harvey & Wadge 1994; Distel et al. 1995) and so it is
pertinent to consider both possibilities.

To examine the effects of preference, we assume
that patch encounter is still random but that patches
are rejected with a probability of 80% when they are
either above or below a certain biomass threshold.
Thus, animals reject patches either if they are above
0·2 kg m–2 or if the are below 0·12 kg m–2. In reality,
patch rejection is associated with an additional time
cost, one of ‘searching’ and/or ‘lost opportunity’
(Spalinger & Hobbs 1992; Parsons et al. 1994;
Thornley et al. 1994). In a model that is not explicitly
spatial, we cannot relate search time, for example,
with the additional distance travelled by animals.
Instead, we associate a fixed time cost with every
patch that is encountered and rejected. For the purpose
of comparison, we assume that patch rejection is asso-
ciated either with no additional time cost, or with an
additional cost equivalent to 1/2tprehandtpreh.

In Fig. 6, we assumed a defoliation fraction of
f = 1·0, to maximize, in this simulation, the amount of
biomass variation that animals can respond to. Under
these conditions, patch selection has large effects on
vegetation growth and animal intake. When animals
reject high biomass patches (Fig. 6b), animal intake
can be severely reduced compared to a situation when
animals do not reject (Fig. 6a). Interestingly, in the
steady-state equilibrium, the reduction of animal
intake is not so much the result of the additional time
cost associated with rejection but owing to the state of
the vegetation, which supports less growth. Animals
have this negative effect on vegetation growth,
because, by rejecting patches above a certain biomass,
they (1) allow a larger portion of the field to approach
ceiling yield and thus cease to grow and (2) increase
the grazing pressure in the remaining portion of the
field, which also reduces the rate of regrowth. When
animals reject low biomass patches, the effect on the
vegetation is opposite (Fig. 6c). The maximal vegeta-
tion growth rate is now greater, so that more animals
could be supported at a satiating intake level.
Compared to animals that do not reject (Fig. 6a), ani-
mals also achieve satiation at lower average vegetation
biomass, provided the cost of patch rejection is low.

DISCONTINUOUS STABILITY REVISITED

Our analysis of a spatial model suggests that dual
(i.e. discontinuous) should not be as common as
Noy-Meir’s non-spatial analysis suggests. The pre-
sent model is different from Noy-Meir’s model in
several aspects: (1) it describes grazing as a discrete
(as opposed to continuous) process at the patch
scale, (2) it uses a different growth function, which
attributes smaller relative growth rates to vegetation
after lenient defoliation and (3) it considers stochas-
ticty in patch selection. In Figs 7, 8 and 9 we exam-
ine systematically the role of each feature on the dual
stability domain.
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Fig. 5. Stability analysis for the patch-based model with random patch selection.
Average plant growth rates (solid lines) and average rates of consumption (dotted
lines) are based on steady-state solutions for fixed bite numbers taken at random from
2000 patches and presented as functions of average patch biomass. The defoliation
fraction is set to f = 1·0 and stock densities to 3 (a), 4·9 (b) and 6 (c) an ha–1. All other
parameters are set to default values.



In Fig. 7, we compare the effect of modelling graz-
ing as a discretevs continuous process per seon the
dual stability domain. To generate a continuous ver-
sion of our model, the amount of biomass consumed
per day was subtracted uniformly from across all
patches, instead of subtracting it only from those
patches where bites were taken (this procedure is
actually adopted in some grazing models that assume
spatial homogeneity, see Woodward 1998). The areas
highlighted circumscribe the range of f-values and
stock densities that allow dual stability. Modelling
grazing as a discrete process per seappears to have lit-
tle effect on the size of the dual stability domain, but
for both growth functions, shifts the dual stability
domain towards lower stock densities.

In Fig. 8, we assume defoliation is a discrete pro-
cess throughout and we now consider the effect of
deterministic vs stochastic patch selection. For both
growth functions, random patch selection greatly
reduces the dual stability domain compared to deter-
ministic patch selection and the new growth function
has an even smaller dual stability domain than the
logistic under random patch selection. Finally, Fig. 9
shows that herbivore selectivity, modelled here as the
tendency to reject patches above or below a biomass
threshold, can also impact stability. The rejection of
high biomass (tall) patches tends to reduce the dual
stability domain, while rejection of low biomass
(short) patches tends to do the opposite. However,
near f = 0·5, dual stability disappears in all cases.

Discussion

DUAL STABILITY IN TEMPERATE GRAZED

GRASSLANDS

Although both general (Noy-Meir 1975) and more
parameterized grazing models for temperate grasslands
(e.g. Johnson & Parsons 1985; Parsons, Harvey &
Woledge 1991) have supported the expectation that dual
stability can arise in grazed systems, empirical evidence
for this is sparse and is limited to situations where the
cause of the system’s discontinuous productivity
remains ultimately unexplained (Mott 1960; Paulsen &
Ares 1961; Morley 1966; Owen & Ridgman 1968).
Seasonal variation in weather means that the grazing
system is often in a transient state, i.e. following an equi-
librium that shifts with season. This makes it difficult to
characterize the stability of a system empirically.
However, dual stability remains a serious issue, as it is
critical to know whether the system is moving towards a
productive or an unproductive state. Variation in
weather, like fluctuation in stock density, could precipi-
tate the system’s decline towards an unproductive state.
As Noy-Meir noted, to recover from an ‘overgrazed’
state would then require a drastic reduction in stock den-
sity across the dual stability region and into the region
where there exists only one ‘upper equilibrium state’.
Production at or near the maximum could be maintained

Fig. 6. Stability analysis for three cases of preference in patch selection. Average
plant growth rates (solid lines) and average rates of consumption (dotted line) are
based on steady-state solutions for fixed bite numbers taken from 3000 patches and
presented as functions of average patch biomass. The defoliation fraction is set to
f = 1·0 and stock density is 5 an ha–1. All other parameters are set to default values: (a)
no rejection of randomly encountered patches; (b) 80% of all randomly encountered
patches above 0·2 kg m–2 are rejected; (c) 80% of all randomly encountered patches
below 0·12 kg m–2 are rejected. Multiple dotted lines correspond to different costs of
rejection and the costs increase in the direction of the arrows (see text for detail).

Fig. 7. Dual stability domains for continuous and discrete, deterministic defoliation.
The highlighted areas circumscribe parameter domains (in defoliation fraction f and
stock density) that generate dual stability. All other parameters are set to default values.



only ‘by very frequent, almost constant, adjustment of
stock density in response to fluctuations in vegetation’
(Noy-Meir 1975).

We have analysed the dual stability property of a
model that was very similar to previous models in its
basic assumptions and parameter settings, but that

described grazing as a discrete process at the bite
scale. When we made no further assumption about the
animal’s ability to forage, i.e. when we assumed that
animals eat from any patch they encountered and
encounter was random with respect to patch condi-
tion, we found that dual stability was much less likely
(there was a far smaller domain for dual stability) than
previous models predicted. This was true whether we
used a traditional logistic or the new growth function.
Defoliation fractions per bite had to be in excess of
50% of the grazeable biomass for dual stability to
occur and even then, it occurred over a much smaller
range of stock densities. In addition, the potential
effects of dual stability were minor, because the pro-
ductivity of the two stable equilibria was very similar.
Thus, the two equilibria would be virtually indistin-
guishable in a field situation.

When we assumed that animals exhibit prefer-
ences for patches of given states, the result was
somewhat different (Fig. 9). Dual stability was less
likely when animals rejected patches of large
biomass, but morelikely when they rejected patches
of low biomass (showed a preference for large
biomass areas), provided the time costs of making
such choices were low. However, as for random
patch selection, dual stability was impossible when
the defoliation fraction was 50% or lower. Actual
defoliation fractions for large ungulate herbivores
have been reported to be in that same region of about
50% (Ungar et al. 1991; Laca et al. 1992), where,
according to our model, dual stability should only be
a marginal phenomenon. Thus, we suggest that ear-
lier models, in part by ignoring the stochastic and
spatial nature of grazing, over-emphasized the
importance of dual stability.

THE ROLE OF HETEROGENEITY IN YIELD

We have seen that grazing is fundamentally linked to
the generation and maintenance of spatial heterogene-
ity in pasture. There is a widely held perception that
spatial heterogeneity is always deleterious to produc-
tivity and this is used to justify a management that
maintains spatial homogeneity at all times (e.g. cut-
ting instead of grazing). However, spatial heterogene-
ity, per se, is not deleterious. Consider the case where
grazing at the patch scale is deterministic with con-
stant defoliation interval. We can imagine such a graz-
ing process to be replaced by a cutting regime, so that
patches, instead of being grazed sequentially, are cut
simultaneously at that same defoliation interval.
Under grazing, pasture state would be spatially het-
erogeneous, under cutting it would be spatially homo-
geneous, but the productivity of the two systems
would be exactly equal, because the resulting initial
patch states and defoliation intervals were the same.

In Fig. 10, we compare the equilibrium yields (as
animal intake) that can be expected under a wide
range of stock densities. We also show the biomass
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Fig. 8. Dual stability domains for deterministic and random patch selection with dis-
crete defoliation. The highlighted areas circumscribe parameter domains (in defolia-
tion fraction f and stock density) that support dual stability. All other parameters are
set to default values.

Fig. 9. Dual stability domains for different cases of preference in patch selection.
Patch encounter is random and there is no additional cost associated with patch rejec-
tion. The highlighted areas circumscribe parameter domains (in defoliation fraction f
and stock density) that generate dual stability. All other parameters are set to default
values: (a) patches above 0·2 kg m–2 are rejected with probability 0 (no rejection) or
50%. A rejection probability of 80% does not give dual stability; (b) patches below
0·12 kg m–2 are rejected with probability 0 (no rejection), 50% or 80%.



frequency distributions for patches at optimal stock
density, where yield is maximal. In comparing deter-
ministic and random patch selection, we see that ran-
dom patch selection introduces additional
heterogeneity in patch state. Maximal attainable
yield is reduced from 53 kg ha–1 day–1 under deter-
ministic grazing to 48 kg ha–1 day–1 under random
patch selection. Part of this loss of yield can be
recovered, when animals exhibit a preference for
high biomass patches (or reject low biomass
patches), possibly by narrowing the variation in
patch states around a more productive mean. The
theoretical maximal growth rate for the vegetation
growth function is 58 kg ha–1 day–1 (it occurs when
b' = 0·049 kg m–2 and tint = 28·2 days). This compar-
ison illustrates that mechanistic intake constraints,
which are the only factors restricting yield in the
deterministic case, have as much to do with remov-
ing yield from its theoretical optimum as has addi-
tional patch heterogeneity imposed by random patch
selection. On the other hand, it should also be noted
that for most stock densities, random patch selection
allows either equal or greater yield than determinis-
tic grazing. Thus, in practice, the uncontrollable and
stochastic elements of herbivore grazing should not
impose a serious limitation to yield.

Far more deleterious to the maximal attainable
yield than random grazing, is a patch selection pro-
cess that favours patches with low biomass (or, the

rejection of high biomass patches). Although there is a
reduced tendency for such a system to have dual sta-
bility (two alternative stable states, realized at differ-
ent times) the system instead has a tendency to
generate bimodal frequency distributions and so gives
the impression of maintaining two distinct patch pop-
ulations side by side. This phenomenon has indeed
been observed repeatedly in practice in cattle-grazed
systems (e.g. Laca et al. 1992; Gibb et al. 1997; and
see ‘grazing lawns’ phenomenon in rangeland
Coughenour 1991). Although preference for low
biomass patches is arguably of merit, that is, it may
increase the quality of the ingested food, it is also
widely recognized as reducing production per ha,
because the animals persist on only a fraction of the
total grassland resource. The mechanism we propose
as being responsible for this phenomenon (rejection of
large biomass patches) has not been validated empiri-
cally but our model predicts that cattle may in this
way divide the pasture into distinct areas, both far
removed from optimal conditions. In Gibb et al.’s
(1997) experiments, increasing cattle stock density
increased the size of the frequently grazed area and
decreased the size of less frequently grazed area (this
was also the case in our simulation). However, popu-
lations of ‘tall’ and ‘short’ patches were aggregated to
form ‘tall’ and ‘short’ lawns. This clearly requires that
some elements of preference act at scales larger than
that of individual bites.
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Fig. 10. The rates of growth and consumption in the equilibrium as a function of stock density for four selection scenarios: deter-
ministic (solid line), random (long-dashes), 80% rejection of high biomass (tall) patches (dotted line) and 80% rejection probabil-
ity for low biomass (short) patches (short dashes). The cost of rejection is 1/2 tpreh. All other parameters are set to default values.



MANAGEMENT IMPLICATIONS

Noy-Meir’s analysis of a continuous, non-spatial
grazing model posed an important hypothesis for
managing grazing systems. His analysis suggested
that, to maximize yield (i.e. animal intake per ha) in
grazing systems, stock density has to be set to the
highest value that still supports the upper equilib-
rium state (all animals are satiated, or nearly so).
However, this strategy was also seen to be associ-
ated with a large risk of ‘falling off’ the upper equi-
librium state and onto the lower equilibrium state by
passing (possibly after slight decline in vegetation
growth) through the boundary of the two respective
basins of attraction. Thus, the optimal way to man-
age a grazing system appeared to be a compromise
between maximizing yield and minimizing the risk
of overgrazing.

Our analysis comes to a different conclusion. For
any stock density, when the defoliation fraction is at
or less than 50%, there is only one stable mean pas-
ture state (i.e. the stationary spatial average of con-
tinuously changing patches), and therefore, any
marginal change in stock density leads to a corre-
sponding marginal change in yield. Thus, there
should not be any apparently spontaneous transition
to overgrazed conditions or failure to recover from
an overgrazed state without stock reduction, and a
strategy to avoid overgrazing by operating below
the optimum for vegetation growth would no longer
be a priority.

What remains to be a management concern is the
optimization of pasture growth itself. We did not find
evidence from our study that any particular defolia-
tion fraction optimizes intake. However, we did find
a close interaction between foraging behaviour and
vegetation growth. In all aspects of foraging
behaviour that we considered here, we found a
notable effect on pasture state and growth. There are
many detailed and spatial analyses of foraging
(Stephens & Krebs 1986; Farnsworth & Illius 1998;
Grunbaum 1998), which take the costs of different
foraging strategies into account, but these include
less detailed descriptions of the effects of foraging
strategy on resource regeneration. Progress now
requires a spatially explicit account of grazing that
combines the principles established in this paper with
developments in optimal foraging theory.
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